Clin Res Cardiol 108, Suppl 1, April 2019 |
||
Modellierung und Simulation elektrischer und thermischer Felder bei Vorhofflimmern und Kryoablation der Pulmonalvenen | ||
R. Müssig1, M. Heinke1, J. Hörth1 | ||
1E+I, University of Applied Sciences, Offenburg; | ||
Hintergrund: Die Pulmonalvenenisolation (PVI) mit Hilfe von Kryoballonkathetern ist eine anerkannte Methode zur Behandlung von Vorhofflimmern (AF). Diese Methode bietet eine kürzere Behandlungsdauer als die klassische Therapie durch die Hochfrequenzablation (HF). Ziel dieser Studie war es, verschiedene Kryoballonkatheter, HF-Katheter und Ösophaguskatheter in ein Herzrhythmusmodell zu integrieren und mittels statischer und dynamischer Simulation elektrische und thermische Felder bei PVI unter Vorhofflimmern zu untersuchen. Methodik: Die Modellierung und Simulation erfolgte mit der elektromagnetischen und thermischen Simulationssoftware CST (CST Darmstadt). Zwei Kryoballons, ein HF-Ablationskatheter und ein Ösophaguskatheter wurden auf der Grundlage der technischen Handbücher der Hersteller Medtronic und Osypka modelliert. Der 23 mm Kryoballon und ein kreisförmiger Mappingkatheter wurden in das Offenburger Herzrhythmusmodell integriert, insbesondere die left inferior pulmonary vein (LIPV) zur Simulation der thermischen Feldausbreitung während einer PVI. Die Simulation einer PVI mit HF-Energie wurde mit dem integrierten HF-Ablationskatheter in der Nähe der LIPV durchgeführt. Der im Herzrhythmusmodell platzierte TO8 Ösophaguskatheter ermöglichte die Ableitung linksatrialer elektrischer Felder bei AF und die Analyse thermischer Felder während PVI. Ergebnisse: Elektrische Felder konnten bei Sinusrhythmus und AF mit einem AF-Fokus in der LIVP statisch und dynamisch im Herzen und Ösophagus simuliert werden. Bei einer simulierten 20 Sekunden Applikation eines Kryoballon-Katheters bei -50°C wurde eine Temperatur von -24°C in einer Tiefe von 0,5 mm im Myokard gemessen. In einer Tiefe von 1 mm betrug die Temperatur -3°C, bei 2 mm Tiefe 18°C und bei 3 mm Tiefe 29°C. Unter der 15 sekündigen Anwendung eines HF-Katheters mit einer 8-mm-Elektrode und einer Leistung von 5 W bei 420 kHz betrug die Temperatur an der Spitze der Elektrode 110°C. In einer Tiefe von 0,5 mm im Myokard betrug die Temperatur 75°C, in einer Tiefe von 1 mm 58°C, in einer Tiefe von 2 mm 45°C und in einer Tiefe von 3 mm 38°C. Im Ösophagus konnte bei den meisten Simulationen eine konstante Temperatur von 37°C gemessen und die Gefahr einer Ösophagus-Fistel ausgeschlossen werden. Bei Kryoablation der LIPV wurde eine Abkühlung des Ösophagus auf 30°C gemessen. Schlussfolgerungen: Die Herzrhythmussimulation elektrischer und thermaler Felder ermöglichen mit Anwendung unterschiedlicher Herzkatheter eine statische und dynamische Simulation von PVI durch Kryoablation, HF-Ablation und Temperaturanalyse im Ösophagus. Unter Einbeziehung von MRT- oder CT-Daten können elektrische und thermale Simulationen möglicherweise zur Optimierung von PVIs genutzt werden. Figure 1: From left to right: Offenburg heart rhythm model with integrated HF catheter (top) and integrated cryoballon catheter in the left atrium near the pulmonary veins (left). Simulation of temperature spread while during a cryballon isolation in left atrium |
||
https://www.abstractserver.com/dgk2019/jt/abstracts//P623.htm |