Clin Res Cardiol (2022). https://doi.org/10.1007/s00392-022-02087-y

SARS-CoV-2 infects Human Cardiomyocytes via Vesicular Transport mediated by Inflammation and Oxidative stress
M. Tangos1, M. Varanitskaya1, V. Nageswaran2, P. Ramezani Rad2, D. Kolijn1, H. Budde1, M. Sieme1, S. Zhazykbayeva1, M. Lodi3, M. Herwig1, K. Gömöri1, R. Hassoun1, E. L. Robinson4, T. L. Meister5, K. Jaquet1, Á. Kovács6, J. Mustroph7, K. Evert8, N. Babel9, M. Fagyas10, D. Lindner11, K. Püschel12, D. Westermann11, H. G. Mannherz1, F. Paneni10, S. Pfaender13, A. Tóth14, A. Mügge15, S. T. Sossalla7, A. Haghikia2, N. Hamdani1
1Molekulare und Experimentelle Kardiologie, Ruhr-Universität Bochum, Bochum; 2CC 11: Med. Klinik für Kardiologie, Charité - Universitätsmedizin Berlin, Berlin; 3Neuoanatomie und molekulare Hirnforschung, Ruhr-Universität Bochum, Bochum; 4School of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, US; 5Molekulare und Medizinische Virologie, Ruhr-Universität Bochum, Bochum; 6Molecular and Experimental Cardiology, IFL - RUB, Bochum; 7Klinik und Poliklinik für Innere Med. II, Kardiologie, Universitätsklinikum Regensburg, Regensburg; 8Institut für Pathologie, Universität Regensburg, Regensburg; 9Medizinische Klinik I - Allgemeine Innere, Nephrologie, Gastroenterologie, Pneumologie, Marien Hospital Herne, Herne; 10Universitäres Herzzentrum, UniversitätsSpital Zürich, Zürich, CH; 11Klinik für Kardiologie und Angiologie, Universitäts-Herzzentrum Freiburg / Bad Krozingen, Bad Krozingen; 12Institut für Rechtsmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg; 13Abteilung für Molekulare und Medizinische Virologie, Ruhr-Universität Bochum, Bochum; 14Division of Clinical Physiology, University of Debrecen, Debrecen, HU; 15Medizinische Klinik II, Kardiologie, Klinikum der Ruhr-Universität Bochum, Bochum;

The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Previously, we reported new insights into the mechanisms of SARS-CoV-2 entry into the heart and defined promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities. Although the mechanisms underlying SARS-CoV-2 is CoV-2-related cardiac damage guided by inflammation and oxidative stress, the entry pathways are still debated. Therefore, in this manuscript we sought to determine 1) which heart cells are targeted by SARS-CoV-2, 2) the mechanisms of virus entry into the heart, and 3) how inflammation and oxidative stress promote the viral entry into endothelial cells.

Methods and results: We used serum from SARS-CoV-2 infected patients and non-infected subjects, also tissues from left ventricular (LV) patients that died as a result of pneumonia/acute respiratory distress syndrome or multi-organ failure. Based on confocal microscopy and transmission electron microscopy (TEM), we saw that SARS-CoV-2 reaches the heart via EVs and exosomes. In addition, we found an oxidized microenvironment as a result of SARS-CoV-2 infection as seen from heavily oxidized proteins in endothelial cells and cardiomyocytes and in particular mitochondrial proteins using confocal microscopy and OxICAT method coupled with mass spectrometry (MS) that allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. The OxICAT revealed also highly oxidized cysteins in various proteins involved in exosomal traffic. In addition, we found a close proximity/interaction (less than 40nm) of vesicles and SARS-CoV-2 components in serum and cardiac tissue of severely infected patients. As a result, oxidized microenvironment causes alterations of protein localization and expression, enzyme activity, inflammation, oxidative stress, and oxidized vesicles. Subsequently, we wanted to measure the consequences of the oxidized microenvironment and oxidized exosomes on endothelial and mitochondrial function. Endothelial cell culture experiments were conducted to study the effects of SARS-CoV-2 patient-derived exosomes on mitochondrial function, inflammatory, apoptotic, and glycolytic events. Our results showed increased inflammasomes upon treatment of endothelial cells with SARS-CoV-2 patient-derived exosomes supporting the "cytokines storm" hypothesis and this was also accompanied by mitochondrial dysfunction as seen from reduced basal respiration and ATP production.

Conclusion: Our study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.


https://dgk.org/kongress_programme/ht2022/aP753.html