Clin Res Cardiol (2021). 10.1007/s00392-021-01933-9

Gut microbiota-dependent metabolite propionate mediates atheroprotective effects by immune-dependent modulation of intestinal cholesterol absorption
J. Rößler1, F. L. Zimmermann1, P. Schumann1, A. Jasina1, D. Schmidt1, V. Nageswaran1, U. Ceglarek2, R. Cineus3, A. N. Hegazy3, E. Van der Vorst4, Y. Döring5, N. Kränkel1, D. Leistner1, M. M. Heimesaat6, S. Bereswill6, O. Söhnlein7, D. N. Müller8, A. Haghikia9, U. Landmesser1, A. Haghikia1
1CC 11: Med. Klinik für Kardiologie, Charité - Universitätsmedizin Berlin, Berlin; 2Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, Leipzig; 3CBF: Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin; 4Institut für Molekulare Herz-Kreislaufforschung (IMCAR), Uniklinik RWTH Aachen, Aachen; 5Inselspital - Universitätsspital Bern, Bern, CH; 6Charité - Universitätsmedizin Berlin, Berlin; 7Kardiologie, LMU Klinikum der Universität München, München; 8Max-Delbrück-Centrum für Molekulare Medizin, Berlin; 9Universitätsklinik für Neurologie, Otto von Guericke - Universität Magdeburg, Magdeburg;

Background and Aims

Elevated low-density lipoprotein (LDL) cholesterol is a causal factor for atherosclerotic cardiovascular disease. Growing evidence suggests a crucial role for the gut microbiome in cholesterol metabolism and cardiovascular health. Here, we examined the influence of the gut microbiota-dependent metabolite proprionic acid (PA) on cholesterol metabolism and its interaction with the intestinal immune system.

 

Methods and Results

Apolipoprotein E-/- (ApoE-/-) mice were fed either a standard chow diet (SCD, n=12) or a high fat diet (HFD, n=23) for 6 weeks. After two weeks mice were treated with either PA (150mM) or control vehicle via daily oral gavage. Assessment of lipoprotein fractions in plasma using fast-performance liquid chromatography revealed reduced total cholesterol (TC) (TC: HFD vs. HFD+PA: 451 ± 119mg/dl vs. 309 ± 70mg/dl, n=10-13, p<0.001) and LDL (LDL: HFD vs. HFD+PA: 184 ± 53.5mg/dl vs. 113 ± 37.2mg/dl, n=10-13, p<0.001) upon PA-treatment. Using qRT-PCR altered gene expression of cholesterol regulating genes (Srebp-2, Npc1l1) in PA-treated mice was observed. Histological staining of the aortic root displayed reduced atherosclerotic lesions upon PA-treatment (HFD vs. HFD+PA: 12.2 ± 2.5% of aortic root area vs. 6.6 ± 2.1% of aortic root area, n=8-11, p<0.001). Furthermore, flow cytometry and cytometric bead assay indicated increased regulatory T-cell numbers and IL-10 levels within the intestinal microenvironment by PA-treatment. Subsequent in vivo blockade of IL-10 receptor signaling by intraperitoneal injection of anti-IL-10 receptor monoclonal antibody in ApoE-/- mice (n=8) reversed PA-mediated reduction of TC (HFD+PA vs. HFD+PA +anti-IL-10R: 309 ± 70mg/dl vs. 410 ± 50.1mg/dl, n= 8-13, p=0.002) and LDL (HFD+PA vs. HFD+PA + anti-IL-10R: 113 ± 37.2mg/dl vs. 182 ± 23.3mg/dl, n=8-13, p<0.001) in plasma and increased atherosclerotic lesion size in HFD fed mice (HFD+PA vs. HFD+PA +anti-IL-10R: 6.6 ± 2.1% of aortic root area vs. 16.4 ± 5.5% of aortic root area, n=7-11, p<0.001). Additionally, incubation of intestinal epithelial organoids of murine origin with recombinant mouse IL-10 illustrated a dose-dependent downregulation of Npc1l1, a major intestinal cholesterol transporter.

 

Conclusion

Oral administration of PA reduces LDL levels and atherosclerotic lesion size in hypercholesterolemic (ApoE-/-) mice. Our findings reveal a regulatory role of PA on intestinal cholesterol absorption via modulation of the intestinal immune system representing a novel concept to treat dyslipidemia and prevent atherosclerotic cardiovascular disease.


https://dgk.org/kongress_programme/ht2021/BS894.htm